设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 04:22:22
设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.

设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.
设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.

设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.
正交变换满足 σ^Tσ是恒等映射.因此对任意的两个非零向量a,b,有
<σa,σb>==,即正交变换保持内积不变,因此
||a||^2=<σa,σa>=.长度不变.于是a与b的夹角cos(theta)
=/【||a||*||b||】在正交变换下是不变的.
反之,考虑伸长变换即可.
比如σa=2a,保持夹角不变,但不是正交变换.

设σ是欧式空间V的一个线性变换,证明:σ是正交变换的充要条件是对V的任意向量=. 设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然. 设A是n维欧式空间V的一个线性变换,证明:如果A既是正交变换又是对称变换,那么A^2=E是单位变换 在V上定义线性变换T为T(x)=x-2(x,a)a,其中a是欧式空间V的一个单位向量设a是n维欧式空间V的一个单位向量,在V上定义线性变换T为T(x)=x-2(x,a)a,求:(1)证明T^2=Ev,Ev是V上的单位变换(2)在V中找出 设a是n维欧式空间v的线性变换,证明,a是正交变换的充分必要条件是a在v任意一组标准正交基下的矩阵是正交矩阵 证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关于通常的线性变换的加法与数量乘积是F上的线性空间. 正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换. 设σ是线性空间V上的可逆线性变换,证明:(1)σ的特征值一定不为零. 一个关于矩阵理论的证明题设V是n维线性空间.证明:V中任意线性变换必可表为一个可逆线性变换与一个幂等变换的乘积. 设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2 设T为线性空间V的一个线性变换,且T的平方等于T,证明T的特征值只能是1或0 设σ,τ是向量空间V的两个线性变换,且στ=τσ,证明ker(σ)和Im(σ)都在τ下不变 设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核. 设V是一个n维欧式空间,a不等于0为V中一固定向量,证明W={x/(x,a)=0,x属于v} 37.设σ是F上n维线性空间V的一个线性变换.证明:1.在F[x]中存在次数≤n2的非零多项式f(x),使f(σ)=0 如题,设V是数域P上的一个3m(m>=1)维向量空间设V是数域P上的一个3m(m>=1)维向量空间,W是V的一个m维子空间,试构造V的一个线性变换σ,使得σ的核空间与σ^2的像空间均为W,并求σ的特征值 七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2 设W,U是V的线性变换T的不变子空间,证明:W交U,W+U也是T的不变子空间